Виды и типы солнечных батарей

Все существующие на сегодняшний день виды солнечных батарей можно условно подразделить на следующие классы:

  • батарея маломощная – предназначается для зарядки таких гаджетов, как мобильный телефон и КПК, а также негабаритной техники;
  • батарея универсальная – предназначена для питания электроники «в полевых условиях», обычно пользуется популярностью у туристов;
  • панель солнечных элементов – набор фотопластин на подложке, является основным элементом солнечных устройств широкого спектра.

Помимо этого, классификация солнечных батарей выделяет 3 основных типа: ФЭП – фотоэлектрические преобразователи, ГЕЭС – гелиоэлектростанции и СК — солнечные коллекторы.

Фотоэлектрический преобразователь

Фотоэлектрический преобразователь в лаборатории

1. Фотоэлектрический преобразователь представляет собой полупроводниковое устройство по преобразованию солнечной энергии непосредственно в электричество. Несколько соединенных между собой преобразователей образуют солнечную батарею.

Принцип работы ФЭП основан на фотовольтаическом эффекте, т.е. возникновении электрического тока при воздействии солнечного излучения на неоднородную полупроводниковую структуру. Неоднородность структуры достигается несколькими путями:

  • первый способ – легирование полупроводника различными примесями, вследствие чего образуются несколько p-n переходов;
  • второй способ – соединение разных полупроводников, которые имеют разную ширину запрещенной зоны, т.е. энергию отрыва из атома электрона. При этом создаются гетеропереходы;
  • третий способ – изменения химического состава полупроводника, что приводит к созданию градиента ширины запрещенной зоны, варизонных структур иначе.

Также возможны комбинации перечисленных выше способов, что позволяет добиться большей эффективности преобразователя, которая зависит от электрофизических характеристик полупроводниковой структуры и оптических свойств преобразователя. Важным фактором, определяющим оптические свойства, является фотопроводимость, которая обуславливается явлением внутреннего фотоэффекта, возникающего при облучении полупроводника солнечным светом. Руководствуясь этими физическими свойствами на заводах изготавливают солнечные батареи, которые используются во многих отраслях промышленности.

Гелиоэлектростанция

Гелиоэлектростанция Gemosolar

2. Гелиоэлектростанция – это солнечная установка, которая использует концентрированную солнечную энергию для приведения в действие различных машин: паровых, газотурбинных, термоэлектрических и др. Практическое применение гелиоэлектростанций достаточно разнообразно: выработка электроэнергии, отопление, опреснение морской воды.

Процесс концентрации солнечной энергии осуществляется в специальных концентраторах, в которых используется принцип обычной линзы. В промышленности вместо линз используют вогнутое зеркало, т.к. линзы достаточно тяжелы и имеют высокую стоимость. Такие зеркала являются основным элементом гелиоконцентратора, который собирает параллельные солнечные лучи. Как только в фокусе зеркала размещается труба с водой, она начинает нагреваться. Зеркало выполняют либо из обычного стекла, либо из полированного алюминия.

Применение зеркал, по сравнению с линзами, световодами и подобными устройствами, является наиболее эффективным, поскольку позволяет получить наиболее высокий уровень мощности солнечного излучения. Наиболее эффективно применение гелиоэлектростанций в тропических широтах. Средняя полоса также позволяет применять этот принцип преобразования энергии.

Солнечный коллектор

Солнечные коллекторы автосалона Гема Моторс

3. Солнечный коллектор представляет собой низкотемпературную нагревательную установку, которая используется для автономного горячего водоснабжения как жилых, так и производственных помещений.
Солнечный коллектор – наиболее используемый тип преобразователей солнечной энергии. Они выполняют широкий спектр работ по преобразованию энергии. При помощи солнечных коллекторов добывают из колодцев воду, подогревают пищу, высушивают фрукты и овощи, замораживают продукты и т.п.

Главное преимущество солнечного коллектора – высокое значение КПД. Мощность коллектора определяется его полезной площадью. Солнечные коллекторы могут нагреть воду до температуры 100-200 градусов (в зависимости от вида солнечных батарей).

Все солнечные коллекторы можно разделить на 3 вида – плоские, вакуумные и коллекторы-концентраторы:

  • плоский коллектор представляет собой конструкцию из элемента-абсорбера, который поглощает солнечное излучение; прозрачного покрытия (обычно используется закаленное стекло с пониженным содержанием металла) и термоизолирующего слоя. Плоский солнечный коллектор способен нагревать воду до 190-200 градусов.

    Особое оптическое покрытие плоского коллектора в инфракрасном свете не излучает тепло, что значительно повышает его эффективность. В качестве абсорбера широко применяется листовая медь, отличающаяся хорошей теплопроводностью;

  • вакуумный коллектор имеет многослойное стеклянное покрытие. Тепловая труба вакуумного коллектора устроена, как термос. Это позволяет сохранять до 95% тепловой энергии. В нижней части трубки коллектора располагается жидкость, которая при нагревании превращается в пар. Поднимаясь в конденсатор, расположенный в верхней части трубки, пар конденсируется и передает в коллектор тепло (по законам физики).

    При условиях слабой освещенности этот вид коллекторов обладает большим КПД, чем плоские коллекторы;

  • коллектор-концентратор для концентрации солнечной энергии использует зеркальную поверхность, которая фокусирует свет с большой поверхности на меньшей поверхности абсорбера. Благодаря этому достигается достаточно высокая температура. В некоторых случаях излучение может концентрироваться в фокусной точке, в других случаях — вдоль тонкой фокальной линии. Для работы с концентраторами используются специальные следящие устройства, которые поворачивают его солнечному свету.

    Концентраторы позволяют нагревать до значительно более высоких температур, чем предыдущие виды, однако могут концентрировать лишь прямое излучение. В туманную и облачную погоду работа концентраторов затруднена. Концентраторы наиболее эффективны в пустынных регионах и близко к экватору и используются в основном в промышленности, вследствие их дороговизны.

Дополнительно все солнечные батареи классифицируются по организации атомов кремния в кристалле солнечного элемента: монокристаллические, поликристаллические и аморфные.

  1. Монокристаллические батареи снабжены крайне чистым кремнием, который достаточно хорошо освоен в производстве полупроводников. Монокристалл растет на семени, вытягивающемся из кремниевого расплава. Полученные таким путем стержни разрезаются на части толщиной 0,2-0,4 мм, образуя ячейки. Оптимальное количество используемых ячеек – 36 штук.

    Батареи, полученные из монокристаллов кремния, пользуются наибольшей популярностью. КПД монокристаллических батарей – 14-17%.

  2. Поликристаллические солнечные батареи изготавливаются из кремния, который получается путем медленного охлаждения кремниевого расплава. Такой способ менее энергоемкий и более дешевый. Кремний, получаемый для поликристаллических солнечных батарей, ярко синего цвета.

    КПД поликристаллических батарей – 10-12%.

  3. Батареи из аморфного кремния получаются путем «техники испарительной фазы». Тонкая пленка кремния при этом методе просто осаждается на несущий материал и защищается покрытием, поэтому такие батареи также называются тонкопленочными.

    Этот метод изготовления самый простой и дешевый, однако эффективность батареи значительно ниже, чем в кристаллических батареях, к тому же элементы из аморфного кремния подвержены процессу деградации. Работают тонкопленочные батареи при рассеянном излучении, устанавливаются на стены зданий. КПД батарей из аморфного кремния – 5-6%.

О структуре солнечной батареи в готовом исполнении вы сможете прочесть в другой статье. Последние разработки швейцарских ученых позволили получить новый дизайн тонкопленочных солнечных элементов, которому дали название «швейцарский сыр». Разработчики придумали 3D-форму, при которой поглощающий слой сохраняется толстым, но расстояние между электродами при этом достигается минимальное. В разработке применялась технология плазменно-химического осаждения, которая обычно используется для производства ЖК-экранов. Дополнительно были внедрены подложки из массива наностолбиков оксида цинка. Полученная форма позволяет копировать форму поликристаллов.